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SUMMARY

In this paper, we derive an object-oriented parallel algorithm for three-dimensional isopycnal �ow
simulations. The matrix formulation is central to the algorithm. It enables us to apply an e�cient
preconditioned conjugate gradient linear solver for the global system of equations, and leads naturally
to an object-oriented data structure design and parallel implementation. We discuss as well, in less
detail, a similar algorithm based on the reduced system, suitable also for parallel computation. Favorable
performances are observed on test problems. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

E�ective semi-implicit �nite di�erence methods have been developed for the simulation of
shallow water equations in two space dimensions [1] and for stably strati�ed isopycnal free
surface �ow in three space dimensions [2]. These methods �nd application to such problems as
computing circulation in lakes, estuaries, and coastal seas. As with implicit methods generally,
there is an associated computational challenge—at each time step, a linear algebraic system
needs to be solved. For problems arising in practical applications, the linear systems can be
very large, millions of equations for millions of unknowns, and their solution consumes most
of the computer time needed for simulating the �uid �ow. Accordingly, parallel computing
can be attractive. Our approach is built on exploiting the sparsity and structure of the �nite
di�erence coe�cient matrices. It employs a preconditioned conjugate gradient method, as do
approaches of Casulli in References [1] and [2]. Indeed, it was Casulli’s remark to us of
the need for developing conjugate gradient preconditioners to speed up solution of the linear
systems in Reference [2] that led us to the present study.
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In Section 2 the three-dimensional isopycnal �ow model and its semi-implicit �nite di�er-
ence discretization are described. In Section 3 we give a matrix formulation of the problem,
and in Section 4 we propose two solution methods, based on similar underlying principles.
The �rst method is suitable for two-dimensional shallow water �ow, or three-dimensional
isopycnal �ow with a small number of vertical layers; the second method is appropriate for
three-dimensional isopycnal �ow with a large number of vertical layers. We discuss in greater
detail the latter case, as it is computationally the more demanding. In Section 5 we discuss for
this case an object-oriented parallel algorithm and in Section 6 present computational results
on test problems. Conclusions and remarks are given in Section 7.

2. THREE-DIMENSIONAL ISOPYCNAL FREE SURFACE FLOW

2.1. Physical model

The layered isopycnal model, as presented in Reference [2], consists of a �nite number of
moving layers of ideal �uid, stacked vertically, each layer having uniform density (Figure 1).
The layers are assumed to be in hydrostatic equilibrium (less dense layers above more dense
ones), and the separation surfaces between layers are assumed to be expressible
as single-valued functions of height. Under this model, the governing equations can be
expressed in terms of layer density � rather than vertical z-coordinate, resulting in substantial
simpli�cation.
For a system of M layers with densities �1¿�2¿· · ·¿�M¿0, denote the separation surface

between layers k and k + 1 by z= �k(x; y; t), where z is the vertical coordinate, x; y the
horizontal coordinates, and t the time variable. Let uk(x; y; t) and vk(x; y; t) denote the velocity
components in the x and y directions, respectively, in layer k (these velocity components
are assumed to be independent of z within each layer). Then, the equations for layer k
are [2]
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3-D ISOPYCNAL FLOW SIMULATION 587

Figure 1. Isopycnal con�guration.

Here �xk+1=2 and �
y
k+1=2 denote the shear stress components between layers and are taken to be

�xk+1=2 = 2�
V
k+1=2

uk+1 − uk
�k+1 − �k−1 ; �yk+1=2 = 2�

V
k+1=2

vk+1 − vk
�k+1 − �k−1 ;

where �V is the vertical eddy viscosity coe�cient. The parameter �h denotes the horizontal
eddy viscosity coe�cient, and g is the gravitational acceleration. See Reference [2] for details
on boundary conditions and on the various parameters.

2.2. Semi-implicit �nite di�erence scheme

By means of a careful di�erencing in space and time and judicious selection of which variables
to evaluate implicitly and which explicitly, a discretization of Equations (1)–(3) is derived
in Reference [2] that is stable in time and yields linear systems that are suitable for iterative
solution by the conjugate gradient method. The physical domain in the x–y plane is subdivided
into NxNy rectangular cells of uniform length �x and width �y in each �uid layer. Each cell is
numbered at its center correspondingly with indices i; j. The discrete uk velocities are de�ned
at half integer i and integer j; vk are de�ned at integer i and half integer j. The �k are de�ned
at integer i and j. The linear system to be solved for updating variables from time step n to
time step n+ 1 is then

Ani+1=2; jU
n+1
i+1=2; j =G

n
i+1=2; j − Sni+1=2; jR(H n+1

i+1; j −H n+1
i; j ); (4)
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i; j+1=2 =G

n
i; j+1=2 −

�x
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Sni; j+1=2R(H
n+1
i; j+1 −H n+1

i; j ); (5)

H n+1
i; j = �ni; j − [(Sni+1=2; j)�U n+1

i+1=2; j − (Sni−1=2; j)�U n+1
i−1=2; j]

−�x
�y

[(Sni; j+1=2)
�V n+1i; j+1=2 − (Sni; j−1=2)�V n+1i; j−1=2]: (6)

Here U n+1
i+1=2; j and V

n+1
i; j+1=2 denote the vector of unknowns for the M values of uk and vk at

successive �uid layers below the point on the x–y plane, at time step n+ 1; similarly H n+1
i; j
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denotes the vector of the M values of �k . Speci�cally,

U n+1
i+1=2; j=
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:

In general, M may have di�erent values at di�erent points (ilj).
Let ��k = �k − �k−1 and ��k =�k − �k+1. Then the matrices A, S, and R are given by

(indices i; j, and n are suppressed)
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��t
�x

diag(��M ;��M−1; : : : ;��1)



1 0
1 1
: : :
1 1 1 1


 ;

R=
g
�0
diag(��M ;��M−1; : : : ;��1):

Here � is an implicitness parameter, �0 a reference density, g the acceleration due to gravity,
�t the time step, and ��k+1=2 = (��k + ��k+1)=2; �T and �B are non-negative coe�cients
arising from the boundary conditions. A is a symmetric, tridiagonal, positive-de�nite M-matrix,
S is non-negative lower triangular, and R is diagonal with positive diagonal elements. A and
S are time and space varying; R does not vary with respect to either. The vectors Gni+1=2; j,
Gni; j+1=2, and �

n
i; j contain the explicit terms from discretization of Equations (1)–(3).

The staggered tabular points for U , V , and H in Equations (4)–(6) are illustrated in
Figure 2. Associated with a mesh cell (i; j) are the three unknown vectors at time n + 1,
Ui+1=2; j, Vi; j+1=2 and Hi; j, each of dimension M . From Equations (4)–(6) one sees that each
U or V value (denoted by triangles in the �gure) is determined by its two adjacent H values
(denoted by circles) along the x or y direction, respectively; each H value is determined
by its four surrounding U and V values. All the values are to be updated at each time
step.
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3-D ISOPYCNAL FLOW SIMULATION 589

Figure 2. Mesh grid showing staggered tabular points for U; V; and H .

By eliminating U n+1
i+1=2; j and V

n+1
i; j+1=2 from Equations (4)–(6) and setting En+1i; j =RH

n+1
i; j , one

obtains the reduced equation

[
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for the (normalized) interface heights En+1i; j , where

Y ni; j = �
n
i; j − (S�A−1G)ni−1=2; j + (S

�A−1G)ni+1=2; j

− �x
�y

(S�A−1G)ni; j−1=2 +
�x
�y

(S�A−1G)ni; j+1=2:

In the reduced equation, each E=RH value is determined by its four neighbors,
two in the x-direction and two in the y-direction (circular points in Figure 2).
This structure is similar to that of the �ve-point di�erence scheme for the two-dimensional
Poisson equation, except that here the values of E are vectors rather than scalars.
The reduced equation forms the basis for the conjugate gradient iterative solution

method used in Reference [2]. Here we shall consider either the original, unreduced form
Equations (4)–(6) or the reduced form Equation (7) as basis for an iterative method, depend-
ing on the number of vertical layers in a problem.
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3. GLOBAL LINEAR SYSTEM

3.1. Model problem

To simplify the ensuing discussion and notation, we consider a model problem that we shall
use as a framework for describing the numerical algorithms. In the model problem we take
for all vertical layers the same �nite di�erence grid of Nx ×Ny cells on a rectangular domain
and the same value M for each (i; j) point, and we suppose that boundary conditions are such
that there are exactly a total of MNxNy unknown values for each of U n+1

i+1; j, V
n+1
i; j+1 , and H

n+1
i; j ,

with 16i6Nx, 16j6Ny.

3.2. Matrix formulation

We rewrite Equations (4)–(6) in matrix notation, as the global linear system of equations (8)
for the model problem, with dimension 3MNxNy. As in Equation (7), we use the normalized
surface heights En+1i; j =RH

n+1
i; j :



ÂU 0 −ŜU
0 ÂV −ŜV
Ŝ�U Ŝ�V R̂−1


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

(n)

; (8)
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The right-hand-side quantities are given correspondingly by

ĜU =




G3
2 ;1

G5
2 ;1

...
G
Nx+
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


G
1; 32

G
2; 32
...

G
Nx;Ny+

1
2



; �̂=



�1;1
�2;1
...

�Nx;Ny


 :

The reduced Equation (7) can be written in matrix form as well, as a global linear equa-
tion (of dimension MNxNy) for the unknown Ê n+1. Elimination of Û n+1 and V̂ n+1 from
Equation (8) yields

[R̂−1 + Ŝ�U Â
−1
U ŜU + Ŝ

�
V Â

−1
V ŜV ]

(n)Ê n+1 = Ŷ n; (9)

where Ŷ n=[�̂−Ŝ�U Â−1
U ĜU−Ŝ�V Â−1

V ĜV ]
(n). For the right-hand side of Equation (9), the notation

Ŷ n parallels that in Equation (7): Ŷ n=[Y n1;1 Y
n
2;1 · · · Y nNx;Ny ]�.

The coe�cient matrix of Equation (9) is a symmetric, positive-de�nite matrix that is Ny×Ny
block tridiagonal with block size Nx×Nx; the diagonal blocks are themselves block tridiagonal
with size M×M blocks, and the o�-diagonal blocks are block diagonal, also with size M×M
blocks [2]. As mentioned in Section 2.2, the structure is that of the �ve-point di�erence scheme
for the two-dimensional Poisson equation (for the particular i; j ordering used), except that
here the values of En+1i; j are vectors of length M rather than scalars, and the coe�cients are
M×M matrices.
We illustrate the structure of Equation (9) for a model problem with just six mesh cells,

Nx=3, Ny=2 and with �x=�y. This will be helpful in discussing the algorithms in
Section 4. One obtains



T1;1 B3
2 ;1

0 B
1; 32

0 0

B3
2 ;1

T2;1 B5
2 ;1

0 B
2; 32

0

0 B5
2 ;1

T3;1 0 0 B
3; 32

B
1; 32

0 0 T1;2 B3
2 ;2

0

0 B
2; 32

0 B3
2 ;2

T2;2 B5
2 ;2

0 0 B
3; 32

0 B5
2 ;2

T3;2




(n) 


E1;1

E2;1

E3;1

E1;2

E2;2

E3;2




(n+1)

=




Y1;1

Y2;1

Y3;1

Y1;2

Y2;2

Y3;2




(n)

; (10)

where

Ti; j=R−1 + (S�A−1S)
i− 1
2 ; j
+ (S�A−1S)

i+12 ; j
+ (S�A−1S)

i; j− 1
2
+ (S�A−1S)

i; j+12
;

B
i+12 ; j

= − (S�A−1S)
i+12 ; j

; B
i; j+12

= − (S�A−1S)
i; j+12

:

In Reference [2], at each time step the reduced system (9) is formulated from the
current solution Ê n and solved for Ê n+1 using a conjugate gradient method with diagonal
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preconditioning. The elements of Û n+1 and V̂ n+1 may be obtained from Ê n+1 using Equa-
tions (4) and (5).

4. SOLUTION ALGORITHMS

4.1. Preconditioned conjugate gradients

The solution algorithms we consider employ the preconditioned conjugate gradient algorithm.
However, rather than using the algorithm in its customary form [3; Algorithm 10:3:1], with
recursion of two separate vectors—e�cient for storage requirements—we use instead the three-
term recurrence for the solution vector alone [4]. This latter form is better suited to the matrix
structure of the problem for the preconditionings we consider.

Algorithm 1 (Preconditioned Conjugate Gradient Algorithm)
Let Ã be an n×n real symmetric positive-de�nite matrix, and let b be a real n-vector. To

solve Ãx= b iteratively with n×n preconditioning matrix P̃ (also real symmetric positive-
de�nite):

(i) Let x(0) be a given vector and de�ne x(−1) arbitrarily.
(ii) For k=0; 1; : : : ; until convergence

(a) Solve P̃z(k) = b− Ãx(k).
(b) Compute

�k =
z(k)

�
P̃z(k)

z(k)�Ãz(k)
;

!1 = 1; !k+1 =

(
1− �k

�k−1
· z(k)

�
P̃z(k)

z(k−1)�P̃z(k−1)
· 1
!k

)−1
; k¿1:

(c) Compute x(k+1) = x(k−1) +!k+1(�kz(k) + x(k) − x(k−1)).

We next discuss solution algorithms for our problem for a small and then for a larger
number of vertical layers.

4.2. Small number of vertical layers—red–black ordering

If there are only a few vertical layers, then we address the solution of the linear systems in
terms of the reduced equation. However, instead of employing a conjugate gradient method
directly on Equation (9), as in Reference [2], we instead �rst apply a ‘red–black ordering’
to the mesh values, to take advantage of the two-dimensional-Poisson-like structure. Doing
so gives us two bene�ts: A particular preconditioning for the conjugate gradient method can
be applied to the reordered system, which can require only about half of the computational
work of the lexicographic ordering in Equation (9); also, this preconditioning is well suited
for parallel computation.
Figure 3 illustrates a red–black ordering for the tabular mesh values Ei; j. This �gure is

essentially Figure 2 with the U and V values removed and with the circles denoting the
tabular points for E alternately shaded and open in a checkerboard pattern. As noted in
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Figure 3. Mesh grid showing red–black designation of tabular points for E.

Section 2, from Equation (7) one sees that Ei; j (a ‘black’ point) is determined by the four
surrounding (‘red’) points, Ei−1; j, Ei+1; j, Ei; j+1 and Ei; j−1. In a similar way, a red point is
determined by its four surrounding black points. Thus one need have the solution only at
black points, say; the values at red points can be determined directly from them. In this way,
the E points are divided into two groups, with the elements of either group independent of
others within the group. The unknown vector in Equation (9) can be reordered according to
the two sets of points such that it consists of two sub-vectors, red and black.
Carrying out the reordering for the six-mesh-cell model problem (10) one obtains




T1;1 0 0 B3
2 ;1

B
1; 32

0

0 T3;1 0 B5
2 ;1

0 B
3; 32

0 0 T2;2 B
2; 32

B3
2 ;2

B5
2 ;2

B3
2 ;1

B5
2 ;1

B
2; 32

T2;1 0 0

B
1; 32

0 B3
2 ;2

0 T1;2 0

0 B
3; 32

B5
2 ;2

0 0 T3;2




(n) 


E1;1

E3;1

E2;2

E2 ;1

E1;2

E3;2




(n+1)

=




Y1;1

Y3;1

Y2;2

Y2 ;1

Y1;2

Y3;2




(n)

: (11)

Equation (11) has the form [
P1 F

F� P2

][
x1
x2

]
=

[
b1
b2

]
: (12)

Here

P1 =



T1;1 0 0
0 T3;1 0
0 0 T2;2


 ; P2 =



T2;1 0 0
0 T1;2 0
0 0 T3;2


 ; F=



B3
2 ;1

B
1; 32

0

B5
2 ;1

0 B
3; 32

B
2; 32

B3
2 ;2

B5
2 ;2


 ;
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x1 =



E1;1
E3;1
E2;2


 ; x2 =



E2;1
E1;2
E3;2


 ; b1 =



Y1;1
Y3;1
Y2;2


 ; b2 =



Y1;1
Y3;1
Y2;2


 :

A matrix of the form of the coe�cient matrix in Equation (12) is said to have a block
form of Young’s Property A [5; 6]. Of importance here is that P1 and P2 are themselves
block diagonal with block size M×M , M generally being small compared with the dimension
MNxNy of the linear system.
It is shown in Reference [4] that particular choices of preconditioner and initial approxi-

mation can be advantageous in Algorithm 1 for a coe�cient matrix of the form of Equation
(12); see also Reference [7]. We have:

Lemma

In Algorithm 1, let Ã, x, and b have the form indicated in Equation (12), and let the initial

vector x(0) =
[
x(0)1
x(0)2

]
be such that P2x

(0)
2 = b2−F�x(0)1 . Then for k=0; 1; : : : ; there holds �k ≡ 1,

z(k)1 ≡ 0 if k is odd, and z(k)2 ≡ 0 if k is even, where z(k) =
[
z(k)1
z(k)2

]
.

Proof
See References [4] and [7].

The properties, that half of the elements of successive z(k) are zero and that one of the
conjugate gradient parameters �k need not be computed, can be exploited to give considerable
computational cost savings for Algorithm 1. Based on the Lemma, we give below a special
form that Algorithm 1 can take for these matrices [4].

Algorithm 2 (Preconditioned Conjugate Gradients for Matrices of the Form of
Equation (12))
For an equation of the form of Equation (12) satisfying the hypotheses of Algorithm 1,

and with preconditioning matrix

P̃=

[
P1 0
0 P2

]
:

(i) Let x(0)1 be a given vector, and solve P2x
(0)
2 = b2−F�x(0)1 for x(0)2 . De�ne x

(−1) =
[
x(−1)
1

x(−1)
2

]
arbitrarily.

(ii) Take as initial vector x(0) =
[
x(0)1
x(0)2

]
, and correspondingly set z(0)2 = 0.

(iii) For k=0; 1; : : : ; until convergence
(a) If k is even
Solve P1z

(k)
1 = b1 − P1x(k)1 − Fx(k)2 .
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Compute

!1 = 1; !k+1 =

(
1− z(k)

�

1 P1z
(k)
1

z(k−1)
�

2 P2z
(k−1)
2

· 1
!k

)−1
; k¿2:

Compute

x(k+1)1 = x(k−1)1 +!k+1(z
(k)
1 + x(k)1 − x(k−1)1 );

x(k+1)2 = x(k−1)2 +!k+1(x
(k)
2 − x(k−1)2 ):

(b) If k is odd
Solve P2z

(k)
2 = b2 − P2x(k)2 − F�x(k)1 .

Compute

!k+1 =

(
1− z(k)

�

2 P2z
(k)
2

z(k−1)
�

1 P1z
(k−1)
1

· 1
!k

)−1
:

Compute

x(k+1)1 = x(k−1)1 +!k+1(x
(k)
1 − x(k−1)1 );

x(k+1)2 = x(k−1)2 +!k+1(z
(k)
2 + x(k)2 − x(k−1)2 ):

In each iteration of Algorithm 2, matrices are half the size of those in Algorithm 1. As also
there is no need to compute �k , Algorithm 2 reduces the computational work by more than
half compared with an approach to Algorithm 1 that does not take advantage of the block
2-cyclic matrix structure.
Algorithm 2 not only can signi�cantly reduce the computational work per iteration, but

it also has desirable parallel properties. In Algorithm 2, the preconditioning linear systems
Pmz

(k)
m = r(k)m , m=1; 2 involve only one of the two colored sets of points, while the values at

the other points remain unchanged. Furthermore, as points of the same color are independent
of each other and P1; P2 are block diagonal, all the corresponding localized linear systems
in Equation (7) for our problem can be solved e�ciently in parallel. Other computational
operations in Algorithm 2, such as matrix-vector multiplication, vector inner product, and
vector update, can be carried out in parallel in a similar fashion.
If M is large, a shortcoming in applying the algorithm to Equations (10) or (11) is that the

diagonal blocks Ti; j are dense matrices of size M×M . Generating each Ti; j and solving the
corresponding linear system requires O(M 3) operations (and memory requirements O(M 2)).
Thus the algorithm is attractive primarily if the number of vertical layers in a problem is
small; otherwise, alternatives can be more suitable. We present such an alternative next based
on the unreduced global linear system (8).
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4.3. Large number of vertical layers—unreduced global linear system

We return now to the unreduced linear system (8), on which we base an algorithm for the
case of more than just a small number of vertical layers. Although the unreduced system has
dimension 3MNxNy, as opposed to just MNxNy for the reduced system, it has the computational
advantage of all its M×M sub-matrices being sparse. Operations that were O(M 3) for the
reduced system can be done for the unreduced system with only linear increase with M
(memory requirements change also from O(M 2) to O(M)).
Speci�cally, because the diagonal blocks Ai+1=2; j and Ai; j+1=2 of ÂU and ÂV in Equation (8)

are tridiagonal matrices and R−1 is a diagonal matrix, the work of generating and solving
linear systems involving them increases just linearly with M . The blocks of the o�-diagonal
matrices ŜU and ŜV are not sparse, but they are triangular matrices of a special form, the
product of a diagonal matrix and a triangular matrix with all nonzero elements unity. Only
the diagonal elements of such matrices need be stored, and calculation of the product of the
matrices with a vector can be carried out in a manner that grows only linearly with M : To
calculate

Sx=



d1 0

d2
. . .

0 dM






1 0
1 1
: : :
1 1 1 1






x1
x2
...
xM


 =



y1
y2
...
yM




set t= x1, y1 = td1, and then for i=2; : : : ; M calculate t= t + xi; yi= tdi.
One sees that the coe�cient matrix of the unreduced global linear system (8) is not sym-

metric, thus Algorithms 1 and 2 cannot be applied to it directly. However, the matrix is real
positive, i.e., it has positive-de�nite symmetric part



ÂU 0 0

0 ÂV 0

0 0 R̂−1


 :

With this symmetric part as preconditioner, a special conjugate gradient algorithm is possi-
ble [8]. As the coe�cient matrix of Equation (8) has also a block Property A form with
sparse diagonal blocks, that feature can be incorporated into the algorithm as well. First, we
state from Reference [8]:

Algorithm 3 (Preconditioned Conjugate Gradient Algorithm for Certain Nonsymmetric
Systems)
Let Ã be a nonsymmetric n× n real matrix with positive-de�nite symmetric part (Ã+Ã�)=2,

and b a real n-vector. To solve Ãx= b iteratively with preconditioning matrix P̃=(Ã+Ã�)=2:

(i) Let x(0) be a given vector and de�ne x(−1) arbitrarily.
(ii) For k=0; 1; : : : ; until convergence
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(a) Solve P̃z(k) = b− Ãx(k).
(b) Compute

!1 = 1; !k+1 =

(
1 +

z(k)
�
P̃z(k)

z(k−1)�P̃z(k−1)
· 1
!k

)−1
; k¿1:

(c) Compute x(k+1) = x(k−1) +!k+1(z(k) + x(k) − x(k−1)):

Note that, as for Algorithm 2, this algorithm requires computation of only one of the
conjugate gradient parameters, !k . The algorithm is attractive when (ii(a)) is su�ciently
simpler to solve than is the original equation, and when also P̃ is ‘near enough’ to Ã to be
a good preconditioner. If Ã were symmetric, then Algorithm 3 would collapse just to solving
the original equation Ãx= b at step k=0.
For an equation, such as Equation (8), that has also the structure[

P1 −F
F� P2

][
x1
x2

]
=

[
b1
b2

]
(13)

with sparse diagonal blocks, we can take advantage of the structure to obtain the following
algorithm, in a manner similar to which Algorithm 2 was obtained from Algorithm 1. For
Equation (8) we have

P1 =

[
ÂU 0

0 ÂV

]
; P2 =R−1; F=

[
ŜU
ŜV

]
;

x1 =

[
Û

V̂

]
; x2 = [Ê]; b1 =

[
ĜU
ĜV

]
; b2 = [�̂]:

Algorithm 4 (Preconditioned Conjugate Gradient Algorithm for Certain Nonsymmetric
Systems of the Form of Equation (13))
For an equation of the form of Equation (13) satisfying the hypotheses of Algorithm 3,

with P1 and P2 symmetric and preconditioning matrix

P̃=

[
P1 0
0 P2

]
:

(i) Let x(0)1 be a given vector, and solve P2x
(0)
2 = b2−F�x(0)1 for x(0)2 . De�ne x

(−1) =
[
x(−1)
1

x(−1)
2

]
arbitrarily.

(ii) Take as initial vector x(0) =
[
x(0)1
x(0)2

]
, and correspondingly set z(0)2 = 0.

(iii) For k=0; 1; : : : ; until convergence
(a) If k is even
Solve P1z

(k)
1 = b1 − P1x(k)1 + Fx(k)2 .
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Compute

!1 = 1; !k+1 =

(
1 +

z(k)
�

1 P1z
(k)
1

z(k−1)
�

2 P2z
(k−1)
2

· 1
!k

)−1
; k¿2:

Compute

x(k+1)1 = x(k−1)1 +!k+1(z
(k)
1 + x(k)1 − x(k−1)1 );

x(k+1)2 = x(k−1)2 +!k+1(x
(k)
2 − x(k−1)2 ):

(b) If k is odd
Solve P2z

(k)
2 = b2 − P2x(k)2 − F�x(k)1 .

Compute

!k+1 =

(
1 +

z(k)
�

2 P2z
(k)
2

z(k−1)
�

1 P1z
(k−1)
1

· 1
!k

)−1
:

Compute

x(k+1)1 = x(k−1)1 +!k+1(x
(k)
1 − x(k−1)1 );

x(k+1)2 = x(k−1)2 +!k+1(z
(k)
2 + x(k)2 − x(k−1)2 ):

For our problem (8), the work required for Algorithm 3 or 4 is linear in terms of M , as
all component operations for the matrix blocks are linear in M , as discussed above. We focus
attention in the following section on an object-oriented parallel implementation of Algorithm 4
for solving Equation (8).

5. COMPUTER IMPLEMENTATION

5.1. Parallel processing

Algorithm 2 and Algorithm 4 are well suited for parallel processing. We focus here on an
implementation for the more complex case of Algorithm 4 and the unreduced system. For
the implementation we take vectors Û and V̂ in Equation (8) to correspond to ‘red points’
and Ê to ‘black points’. As vector components on points of the same color are independent
of one another and are determined solely by values at points of the other color, each step of
Algorithm 4 can be decomposed into operations on only one set of colored points, while the
other set of points remains unchanged. This property is basic to the parallel implementation.
The implementation can be nontrivial, however, for practical problems. The structure of the

global system may not be as straightforward as is Equation (8) for the model problem, because,
in general, the domain can be irregular with di�erent positions having di�erent numbers of
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Figure 4. Class VelocityPoint.

vertical layers. As a result, matrices ŜU and ŜV would not, for example, have a simple block
two-diagonal structure with blocks of the same dimension. Explicit generation of the global
linear system could correspondingly be complicated, because of the di�culty in globally
tracing vector element values at the various mesh points and in determining matrix element
connectivities. A robust procedure would be desirable whereby vectors, Û , V̂ , or Ê, could
communicate locally in a simple manner with neighbors of the opposite color, to generate
and to solve independently the corresponding localized linear systems of Equations (4), (5),
or (6). Object-oriented programming (OOP) provides such a procedure.

5.2. Object-oriented programming

In OOP languages like C++, a class is a user de�ned data type that describes a set of ob-
jects with identical characteristics (data elements) and behavior ( functionality) [9]. Thinking
in these terms, we abstract two classes naturally, VelocityPoint and EPoint, corresponding
respectively to the red and black points.
Each object of class VelocityPoint represents and solves a localized linear system de�ned

by either Equations (4) or (5). Its data include variables, such as coe�cient matrix elements in
the localized system, and working variables, such as matrix decompositions for Algorithm 4.
Its functionality includes communicating with the two neighboring EPoints and generating
and solving the localized linear system. Figure 4 shows the major components of the class
VelocityPoint for Algorithm 4.
In Figure 4, e1 and e2 denote the two neighboring EPoints for a VelocityPoint (a U -point

or V -point). P denotes the coe�cient matrix for the VelocityPoint, i.e., the tridiagonal matrix
A in Equations (4) or (5), which is used as preconditioner for solving the localized linear
system; bidiagonal matrix L and diagonal matrix D are, respectively, the lower triangular and
diagonal factors resulting from the Cholesky decomposition of P. Triangular matrix S is the
coe�cient matrix in Equations (4) or (5) for the two neighboring EPoints for the current
VelocityPoint; S can be stored as a diagonal matrix, as it is a product of a diagonal matrix
and a constant matrix. Vector b is the right-hand side of the localized linear system for the
VelocityPoint, i.e., the vector G in Equations (4) or (5). Vectors x0, x1, x2 and z are working
vectors, used in the preconditioned conjugate gradient linear solver in Algorithm 4; x0, x1,

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:585–605



600 P. CONCUS ET AL.

Figure 5. Class EPoint.

x2 arise in the three-term recurrence of the algorithm, and z is the preconditioned residual
vector. Vector x in the Functionality branch is a generic vector to be multiplied by P or S.
In class VelocityPoint, data storage requirements are linear in M . We apply the Cholesky

decomposition at the beginning of the iteration at each time step and use this decomposition
for solving the linear systems in iteration steps of Algorithm 4.
Class EPoint represents and solves localized linear systems de�ned by Equation (6). As

shown in Figure 5, EPoint is less complicated than is VelocityPoint, as its localized matrix
R̂−1 is a diagonal constant matrix.
In Figure 5, u1 and u2 denote the two neighboring U -points for an EPoint, and v1 and v2

the two neighboring V -points. Vector b is the right-hand side of the localized linear system
for the EPoint, i.e., the vector � in Equation (6). The other vectors are as described for
Figure 4.
In terms of these two classes, VelocityPoint and EPoint, global data structure design and

parallel implementation can be readily accomplished. We need only the three object sets Û ,
V̂ , and Ê to express the matrices and vectors appearing in Equation (8) and in Algorithm 4.
Additionally, we need a matrix array (Mesh) for storing information on the geometry and
on the mapping between elements of the object sets and points on the mesh. An element in
object sets Û or V̂ of class VelocityPoint stores the indices of the two neighboring EPoints
and communicates with them by directly indexing into array Ê. Elements in the object set
Ê communicate with their neighboring VelocityPoints in a similar way. Data initialization is
a three-step process: �rst, the Mesh array obtains the geometry information of the problem;
second, the mesh points are cycled through to identify their characteristics and to allocate the
three vector arrays accordingly, so as to obtain a mapping between mesh points and these
arrays; �nally, for each element in the three arrays, the neighboring elements of the other
class are found.
All global operations, such as matrix-vector multiplication and solution of preconditioned

linear systems, can be realized by iterating through elements of the vector arrays and calling
their corresponding functionalities. As elements in the same array are independent of one
another, they can be assigned to di�erent processors, which can then work simultaneously in
parallel.

5.3. Task assignment and load balancing

In relatively simple problem domains an object takes roughly the same amount of work as
others in the same vector array for performing a particular function. A straightforward static-
task-assignment scheme for load balancing usually works well in such domains. For our test
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Figure 6. Problem domains: (a) test problem, (b) San Francisco and San Pablo Bays.

problem we partition the three vector arrays into essentially equal segments, according to the
number of processors, and each processor is then assigned one segment (i.e., the starting and
ending indices) from each array.
In more complex domains, the amount of work for a certain function can di�er signi�cantly

for di�erent objects in the same array, as objects can have di�erent boundary conditions or
di�erent numbers of vertical layers. For such domains, each element should be weighted by
its computational complexity during the static task assignment, and then some dynamic load
balancing scheme employed.
Figure 6 depicts the two types of problem domains. Figure 6(a) shows an idealized sim-

pli�cation for our numerical test problem of the complex domain in Figure 6(b), the surface
contour of San Francisco=San Pablo Bay. The domain bottom for the test problem, with depths
in the interior varying gradually by about a factor of two or more, is a simpli�ed version
of that of the Bay. Correspondingly, there may be di�ering numbers of vertical layers for
di�erent elements.
For our test problem, once all processors are assigned a segment from each of the three

arrays, the processors can work on most of the global operations in parallel. Global synchro-
nization (e.g., a barrier or a lock) is required for sequential operations. As an example, Algo-
rithm 5 is a (C++)-like parallel implementation for computing the global quantity z(k)

�

1 P1z
(k)
1

in step (iii(a)) of Algorithm 4. Parallel implementations for other global operations in Al-
gorithm 4 are similar. Algorithms like Algorithm 5 are valid for both shared and distributed
memory architectures.

Algorithm 5 (Parallel Implementation for Computing z(k)
�

1 P1z
(k)
1 )

if my ID == 0,
g zPz = 0;

barrier( );
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l zPz = 0;
for i = l start u; i <= l end u; i++;

l zPz += U[i].zPz( );
for i = l start v; i <= l end v; i++;

l zPz += V[i].zPz( );

lock( );
g zPz += l zPz;
unlock( );

Note: Global variables start with g ; local variables start with l .

6. COMPUTATIONAL RESULTS

The domain in Figure 6(a) was used to study the performance of our algorithm. Although a
task assignment scheme is easier to implement for the test problem than it is for the actual
San Francisco Bay, the geometry is su�ciently complex to justify use of an object-oriented
data structure. The (water) domain is discretized on a 1088×1344 two-dimensional mesh, and
physical parameters are taken to accord with those for San Francisco Bay communicated to us
by V. Casulli. Grid size is �x=�y=60 (meters) and water depth in the interior is generally
between about 15 and 40. Boundary conditions are that at the land normal velocities are
zero and at the open boundary the layer interfaces are subject to prescribed vertical motion.
Generally, initial conditions are that the �uid is quiescent and that the layer interfaces are
horizontal and equally spaced; other initial conditions, including random perturbations to these,
were tried for investigating behavior of the algorithm. The behavior reported below persisted
for these changes without signi�cant deviation.
There are three major goals in the design of our algorithm for the unreduced global system:

that it has good convergence rate; that its computational complexity grows linearly with the
number of �uid layers (not cubically as in the case of Algorithm 2 for the reduced system (9));
and that it has good parallel performance. As discussed in Section 4.3 and as observed in our
numerical experiments, the amount of work for initialization of each localized linear system
is proportional to its number of vertical layers. Additionally, generation of the global system
requires very little synchronization, so that the total computational cost of initialization at each
time step is an order of magnitude less than that of solving the system. Thus in assessing
below the behavior of the algorithm, we can focus only on the solving of the linear systems,
and neglect initialization considerations.

6.1. Linear solver convergence

As we take the diagonal blocks of the coe�cient matrix as preconditioner for Algorithm 4,
the degree of block diagonal dominance of the matrix can be important in determining the
convergence rate of the algorithm. In the numerical experiments for Equation (8) we found
that the factor �t=�x in S (see the de�nition of S following Equation (6)) is the princi-
pal quantity on which the linear solver convergence rate depends. The magnitudes of the
o�-diagonal blocks in the global matrix are proportional to this factor.
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Figure 7. Linear solver convergence: (a) for three layers (6:11× 105 unknowns),
(b) for nine layers (1:83× 106 unknowns).

Figure 7 shows the convergence rate achieved by the linear solver for typical parameter
values. Here the tabular points are the relative residuals ‖b − Ax‖2=‖b‖2 at even-numbered
iterations. The rate is found to be quite satisfactory. For example, for nine �uid layers
(and �x=60) the number of unknowns in the global matrix is approximately 1:83×106;
for �t=10 (seconds) only 36 iterations are required for the solver to decrease the two-norm
of the residual by a factor of about 10−9. On a 20-processor 200MHz Sun Enterprise 10000
workstation with 10 Gbytes of memory, this requires about 62 s for a single processor.
The data for Figure 7 were taken after about a dozen time steps and for the previous time

step’s solution as initial approximation for the conjugate gradient iteration. Essentially the
same qualitative convergence results could be observed at other time steps, for di�erent initial
approximations for the conjugate gradient iteration, and for the odd-numbered iterates. One
phenomenon of interest that we observed in the experiments is that the convergence rate of
the linear solver appeared to be insensitive to the number of �uid layers. For convergence,
about the same number of iterations were needed over the tested range of three to nine layers.
Figure 7 shows the similarity between the three-layer and nine-layer cases. For the problem’s
particular matrix structure, for the test parameters considered, and for the preconditioner used
the convergence rate was found to be insensitive to block size.

6.2. Computational cost versus number of vertical layers

To study the dependence of the algorithm’s computational cost on the number of vertical
layers, we varied their number (for �xed total �uid depth) and compared the corresponding
CPU times consumed by the linear solver. Theoretically the total computational cost of the
solver should grow linearly with the average number of layers. This follows from the prop-
erties: (i) that the number of unknowns grows linearly with the number of vertical layers;
(ii) that, as noted above, the number of iterations required for convergence is observed to be
insensitive to the number of layers (i.e., of matrix block size); and (iii) that, as discussed
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Figure 8. E�ect of number of vertical layers: (a) on number of unknowns, (b) on CPU time.

Figure 9. Parallel performance: (a) CPU time reduction, (b) speedup.

in Section 4.3, the computational cost for each block grows linearly with its block size. Our
numerical experiments are in accord with the conclusion of linear growth. Figure 8 shows
the relationship between the average number of vertical layers and the CPU time consumed
by the linear solver.

6.3. Parallel performance

Our parallel implementation is built on multi-threading technology on a shared memory ma-
chine. Each processor has its own computational thread for working on the tasks assigned to
it by the static-task-assignment scheme, and communication is done implicitly through access
to shared data. Synchronization is implemented with barriers and locks.
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Figure 9 depicts the parallel performance of our software on the test problem of Figure
6(a) with nine vertical layers (the resulting number of unknowns is approximately 1:83×106).
Figure 9(a) gives the CPU time used by the linear solver with di�erent numbers of pro-
cessors. The dotted curve is the theoretical time reduction T (n)=T (1)=n for ideal parallel
codes, where T is the CPU time and n is the number of processors. The solid curve is our
experimental result. Figure 9(b) shows the ideal speedup curve (dotted curve, S(n)= n) and
our experimental one (solid curve). One sees that the code scales well as the number of
processors is increased from one to 10.

7. CONCLUSIONS AND REMARKS

We have developed algorithms for solving the simulation equations for three-dimensional
isopycnal �ows with a small or large number of vertical layers. The global matrices have
a special structure, and our linear solvers take advantage of the structure to obtain reduced
computational requirements and to achieve bene�cial behavior for parallel computation. For
the case of a large number of vertical layers, speci�c object-oriented data structure designs
are described. These avoid the use of an explicit matrix framework and lead to a robust
parallel implementation. By working with the unreduced global system Equation (8) instead
of the reduced one Equation (9), we allow the computational costs to grow only linearly with
the number of vertical layers, rather than cubically. Favorable performances are observed for
convergence rate, computational cost growth rate, and parallel speedup.
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